• Paolo Rapisarda (Behavioural systems and Willems' fundamental lemma)

  • Apr 1 2025
  • Length: 1 hr
  • Podcast

Paolo Rapisarda (Behavioural systems and Willems' fundamental lemma)

  • Summary

  • In this episode I talk to Professor Paolo Rapisarda about a bunch of interesting theoretical (but very useful) aspects of control, including his work on behavioural systems theory, model reduction, Willems’ fundamental lemma, and data-driven control.


    You can engage with the podcast on

    X: https://x.com/coffee_ctrl_pod

    BlueSky: https://bsky.app/profile/coffee-and-control.bsky.social

    Instagram: https://www.instagram.com/coffee_and_control_podcast/

    Or email me at lhodginscontrol@gmail.com

    Paolo Rapisarda: https://www.southampton.ac.uk/people/5x2hb9/professor-paolo-rapisarda

    Introduction

    State maps for linear systems: https://eprints.soton.ac.uk/264646/1/State_maps.pdf

    Harry Trentelman: https://research.rug.nl/en/persons/harry-trentelman

    Jan Willems: https://homes.esat.kuleuven.be/~sistawww/smc/jwillems/

    PhD thesis: https://research.rug.nl/en/publications/linear-differential-systems-2

    Behavioural systems

    Epic Jan Willems behavioural systems paper: https://skoge.folk.ntnu.no/prost/proceedings/cpc6-jan2002/willems.pdf

    State maps

    LTV paper:https://eprints.soton.ac.uk/457114/1/State_for_linear_discrete_time_varying_systems.pdf

    Leibnitz rule: https://www.cuemath.com/calculus/leibniz-rule/

    Dissipativity

    Jan Willem’s paper: https://link.springer.com/article/10.1007/bf00276493

    Jan Willem’s optimal control paper: https://ieeexplore.ieee.org/abstract/document/1099831

    Quadratic differential forms: https://epubs.siam.org/doi/10.1137/S0363012996303062

    Balancing

    Siep Weiland: https://ieeexplore.ieee.org/author/37301202100

    Keith Glover: https://www.eng.cam.ac.uk/profiles/kg103

    H-infinity model order reduction: https://ieeexplore.ieee.org/document/701085

    1980 Moore balancing paper: https://ieeexplore.ieee.org/document/1102568

    Kalman decomposition: https://en.wikipedia.org/wiki/Kalman_decomposition

    Arjan van der Schaft: https://scholar.google.nl/citations?user=BIPifjAAAAAJ&hl=en

    Hamiltonian systems: https://www.unige.ch/~hairer/poly_geoint/week1.pdf

    Port Hamiltonianity:https://www.annualreviews.org/content/journals/10.1146/annurev-control-081219-092250

    Jacqueline Scherpen: https://research.rug.nl/en/persons/jacqueline-scherpen

    Balancing of Port-Hamiltonian systems: https://research.rug.nl/files/2999949/2003ProcIFACWorkshopLHMNCLopezlena.pdf

    Balancing for non-linear systems: https://research.rug.nl/files/3318296/1993ProcECCScherpen.pdf

    Fundamental lemma

    Ivan Markovski: https://scholar.google.com/citations?user=qSl_3FQAAAAJ&hl=en

    Continuous-time work: https://www.sciencedirect.com/science/article/pii/S016769112400238X

    Chebychev polynomials: https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html

    Kanat Camblibel: https://scholar.google.com/citations?user=aeWjKPcAAAAJ&hl=en

    Sufficient condition modification of Willems’s lemma: https://arxiv.org/abs/2405.18962

    Experimental implementation: https://arxiv.org/abs/2407.12509

    Data-driven control

    Data-driven ILC:https://ieeexplore.ieee.org/abstract/document/10384133

    DeePC: https://arxiv.org/abs/1811.05890

    Jonathan Mayo-Maldonado: https://scholar.google.co.uk/citations?user=W-vnMBwAAAAJ&hl=en

    Extra questions

    Aizerman’s conjecture: https://en.wikipedia.org/wiki/Aizerman%27s_conjecture


    Show more Show less

What listeners say about Paolo Rapisarda (Behavioural systems and Willems' fundamental lemma)

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.