
Statistical Techniques for Machine Learning
Failed to add items
Sorry, we are unable to add the item because your shopping cart is already at capacity.
Add to Cart failed.
Please try again later
Add to Wish List failed.
Please try again later
Remove from wishlist failed.
Please try again later
Adding to library failed
Please try again
Follow podcast failed
Please try again
Unfollow podcast failed
Please try again
LIMITED TIME OFFER
3 months free
Offer ends July 31, 2025 at 11:59PM PT.
Pick 1 audiobook a month from our unmatched collection.
Listen all you want to thousands of included audiobooks, Originals, and podcasts.
Access exclusive sales and deals.
Premium Plus auto-renews for $14.95/mo after 3 months. Cancel anytime.
Buy for $6.50
No default payment method selected.
We are sorry. We are not allowed to sell this product with the selected payment method
Pay using card ending in
By confirming your purchase, you agree to Audible's Conditions of Use, License, and Amazon's Privacy Notice. Taxes where applicable.
-
Narrated by:
-
Virtual Voice
-
By:
-
Ajit Singh

This title uses virtual voice narration
Virtual voice is computer-generated narration for audiobooks.
About this listen
Key Features of This Book:
1. NEP 2020 & AICTE Compliant: The structure and content directly support the policy's goals of fostering multidisciplinary skills, critical thinking, and experiential, problem-solving-based learning.
2. Logically Structured in 10 Chapters: Offers a complete and concise learning path covering the entire spectrum of statistical techniques relevant for a B.Tech/M.Tech curriculum, from fundamentals to advanced topics.
3. Practical-First Approach: Emphasizes learning through application. Theoretical concepts are immediately followed by simple, step-by-step practical examples that are easy to understand and replicate.
4. Conceptual Clarity over Rote Memorization: Focuses on building intuition behind the mathematics. It answers the "why" behind the formulas, enabling students to reason about model choice and behavior.
5. Balanced Mathematical Rigor: Presents necessary equations and derivations in an accessible manner, without overwhelming the reader, ensuring the book is approachable for students from diverse mathematical backgrounds.
6. Future-Ready Content: Includes dedicated sections and chapters on modern techniques such as ensemble methods (Gradient Boosting), Bayesian statistics, and the statistical underpinnings of deep learning, preparing students for both industry and research.
7. Globally Relevant: While rooted in the Indian educational framework, the topics and depth of coverage are benchmarked against the curricula of top international universities, ensuring students receive a world-class education.
The pedagogical approach is built on a progressive structure, starting with foundational chapters on probability and inference before moving to the core supervised and unsupervised learning paradigms. The book concludes with advanced topics, ensuring students are exposed to the state-of-the-art. Every chapter is infused with simple, practical examples, often using relatable datasets to illustrate complex ideas, making learning both effective and engaging.
No reviews yet