株式会社ずんだもん技術室AI放送局

By: 株式会社ずんだもん技術室AI放送局
  • Summary

  • AIやテクノロジーのトレンドを届けるPodcast。平日毎朝6時配信。朝の通勤時間や支度中に情報キャッチアップとして聞いてほしいのだ。
    Show more Show less
activate_Holiday_promo_in_buybox_DT_T2
Episodes
  • 株式会社ずんだもん技術室AI放送局 podcast 20241108
    Nov 7 2024
    関連リンク SCIPE - Systematic Chain Improvement and Problem Evaluation SCIPEは、複数のLLM(大規模言語モデル)呼び出しを含む複雑なLLMチェーンにおける問題箇所特定を支援するツールです。LLMアプリケーション開発において、最終出力だけでなく中間出力の評価も重要ですが、リソース制約から見過ごされがちです。LLMチェーンの1つのノードの不具合が、全体に悪影響を及ぼすため、デバッグが困難になります。 SCIPEは、LLMチェーンの各ノードの入力と出力を分析し、修正によって最終出力の精度を最も向上させるノードを特定します。これは、正解データ(ground truth)を必要とせず、LLM自身を評価者として利用することで実現しています。 SCIPEはノードの故障確率を2種類に分類します。 独立故障: ノード自体、またはそれを処理するLLMに起因する故障。従属故障: 上流のノードの故障が原因で発生する故障。 LLM評価者(LLM Judge)を用いて各ノードの出力を評価し、パス/フェイルスコアを生成します。この結果から、条件付き故障確率(上流ノードも故障している場合のノード故障率)と独立故障確率を計算し、問題ノードを特定します。 最も下流のノードから開始し、条件付き故障確率に基づいて上流ノードを辿り、独立故障確率が最も高いノードを根本原因として特定します。これは、再帰的なアルゴリズムで実装されています。 SCIPEを使用するには、Langgraphから生成されたアプリケーショングラフ、各ノードの入出力データ(DataFrame形式)、そして設定ファイルが必要です。設定ファイルには、LLM評価者のモデル名、検証結果の保存先などが含まれます。 LLMEvaluatorクラスを用いて、LLM評価を実行し、find_problematic_node()メソッドで問題ノードを特定します。結果は、根本原因ノード、デバッグパス、各ノードの故障確率を含むEvaluationResultオブジェクトとして出力されます。 SCIPEは、LLMチェーンにおける問題ノードの特定と修正を支援することで、LLMアプリケーションの信頼性と性能向上に貢献します。 GitHubリポジトリには、具体的な使用方法や詳細な技術情報は記載されていますが、本要約では省略しています。 引用元: https://blog.langchain.dev/scipe-systematic-chain-improvement-and-problem-evaluation/ Supercharging AI Coding Assistants with Gemini Models Context GoogleとSourcegraph社による共同研究で、Gemini 1.5 ProとFlashモデルを用いた大規模コンテキストウィンドウ(最大100万トークン)が、AIコーディングアシスタントの精度向上に大きく貢献することが示されました。 従来のAIモデルは、大規模なコードベースにおける複雑な関係性や依存関係の理解に課題がありましたが、この研究では、大規模コンテキストウィンドウによってコード理解と生成の精度が向上することを実証しています。 Sourcegraph社が開発したコーディングアシスタント「Cody」を用いた実験では、100万トークンのコンテキストウィンドウを使用することで、以下の3つの指標で大幅な改善が見られました。 Essential Recall(必須情報の再現率): 回答に含まれる重要な事実の割合が大幅に増加しました。Essential Concision(必須情報の簡潔さ): 回答の長さに対する必須情報の割合が向上し、より簡潔で関連性の高い回答が得られるようになりました。Helpfulness(有用性): 回答の長さに対する有用性のスコアが大幅に向上し、よりユーザーフレンドリーな体験が実現しました。 さらに、幻覚率(事実と異なる情報の生成)も18.97%から10.48%に減少しました。これは、AIによるコード生成の信頼性を高める上で重要な成果です。 ただし、大規模コンテキストウィンドウを使用する際には、処理時間増加というトレードオフが存在します。Sourcegraph社は、プリフェッチ機構と階層型コンテキストモデルアーキテクチャによるモデル実行状態キャッシングを実装することで、1MBのコンテキストにおける最初のトークン生成時間を30~40秒から約5秒に短縮することに成功しました。 この研究成果は、大規模コンテキストモデルがコード理解と生成を革新的に変える可能性を示唆しており、今後のAIコーディングアシスタントの発展に大きな影響を与えるものと期待されます。 詳細な評価方法...
    Show more Show less
    Less than 1 minute
  • 株式会社ずんだもん技術室AI放送局 podcast 20241107
    Nov 6 2024
    関連リンク Google Confirms Jarvis AI Is Real by Accidentally Leaking It Googleが開発中のAIエージェント「Jarvis AI」が、Chrome拡張機能ストアに誤って公開され、その後すぐに削除されました。しかし、一部ユーザーはダウンロードに成功したようです。 Jarvis AIは、Web上の情報を収集したり、商品購入やフライト予約といったタスクを自動化することを目的としたAIです。Gemini AIをベースにしており、日常的なWebベースの作業の自動化を支援するとのことです。2024年12月のリリースを目指しているようです。 記事では、Jarvis AIと同様の機能を持つ他のAIエージェントについても言及しています。AnthropicのClaude AIもコンピュータを制御する機能を持ち、Apple Intelligenceも画面上の操作を学習して自動化する機能を有しています。また、MicrosoftのCopilot+ Recallも同様の機能を持っていましたが、プライバシーに関する懸念からリリースが延期されています。 これらのAIエージェントは、コンピュータ操作の自動化という点で共通の目標を持っていますが、プライバシーやセキュリティに関する課題も抱えていることが示唆されています。Jarvis AIの早期公開は、Googleがこうした技術の開発とリリースにおいて、まだ課題を抱えていることを示しているのかもしれません。 今後、Jarvis AIがどのように進化し、どのような機能を提供するのか注目されます。 引用元: https://gizmodo.com/google-confirms-jarvis-ai-is-real-by-accidentally-leaking-it-2000521089 Unearth insights from audio transcripts generated by Amazon Transcribe using Amazon Bedrock Amazon Web Services 本記事は、Amazon TranscribeとAmazon Bedrockを用いた音声データ分析によるビジネス価値創出について解説しています。音声データは分析が難しく、手動での転写・分析は時間とコストがかかりますが、生成AIを活用することで効率的にインサイトを得ることが可能になります。 課題: 音声データの分析は、手動転写とレビューが必要で時間とリソースを大量に消費します。自動音声認識ツールはテキスト化できますが、インサイト抽出には依然として人的作業が必要です。 解決策: Amazon Transcribeによる音声テキスト化と、Amazon Bedrock上のファウンデーションモデル(FM)を用いた分析を組み合わせることで、効率的なインサイト抽出を実現します。具体的には、AnthropicのClaude 3 Sonnetなど、Amazon Bedrockで提供されている様々なLLMを選択して利用可能です。 具体的なユースケース: マーケティングコンテンツ分析: ポッドキャスト、インタビュー、動画などを要約、分類、分析し、新たなマーケティング素材を生成します。会議録分析: 会議録音から主要ポイント、要約、感情分析を行い、戦略的意思決定に役立てます。コンタクトセンター通話分析: 通話を転写・分析し、顧客体験向上に繋げます。 Amazon Transcribeの機能: 音声テキスト化、複数話者認識、個人情報自動削除、業界固有の語彙やカスタム言語モデルの使用による精度向上など。 Amazon Bedrockの機能: テキスト要約、トピック特定、結論認識、感情分析、新規コンテンツ生成など。 既存のテキストデータを用いて、ブログ記事作成、要約文作成、SEOキーワード抽出、さらには顧客満足度や感情分析まで行うことが示されています。 実装例: 記事では、PythonとJupyter Notebookを用いた具体的なコード例が紹介されています。Amazon S3のバケットに音声ファイルをアップロードし、Amazon Transcribeでテキスト化、その後、Amazon Bedrock上のFMを用いて様々な分析を行う流れが示されています。 (コードの詳細な説明は省略) 結論: Amazon TranscribeとAmazon Bedrockの組み合わせにより、音声データから顧客感情、課題、リスク軽減策などの貴重なインサイトを効率的に抽出できます。手動作業に比べて時間とコストを削減し、既存コンテンツを革新的に活用する機会を生み出します。 マーケティング、会議分析、顧客サービスなど、様々な分野で活用可能です。 引用元: https://aws.amazon.com/blogs/machine-learning/unearth-insights-from-audio-transcripts-generated-by-amazon-transcribe-using-amazon-bedrock/ Reducto Document Ingestion API RD-TableBenchは、複雑な表のデータ抽出性能を評価するためのオープンベンチマークです。スキャンされた表、...
    Show more Show less
    Less than 1 minute
  • 株式会社ずんだもん技術室AI放送局 podcast 20241106
    Nov 5 2024
    関連リンク xAI、Grok APIを一般公開|月額25ドルの無料クレジットで開発者獲得へ - イノベトピア イーロン・マスク氏率いるxAIが、大規模言語モデルGrokのAPIを一般公開しました。11月4日より、月額25ドル分の無料クレジットを提供し、開発者獲得を目指しています。Grok APIは、入力トークン100万件あたり5ドル、出力トークン100万件あたり15ドルで利用できます。コンテキスト制限は131,072トークンです。 現在利用可能なのはgrok-betaモデルのみで、OpenAIやAnthropicのSDKと互換性があり、Python、JavaScript、Goなど主要なプログラミング言語をサポートしています。 xAIは、テネシー州メンフィスの「Colossus」という世界最大級のAIトレーニングシステム(10万台のNVIDIA H100 GPU、将来的には20万台規模に拡張予定)を用いてGrokを開発しており、その処理能力は10.6エクサフロップスを超えると推測されています。推定投資額は40億ドル以上とされています。 Grokは既存モデルとは異なる「反抗的な性質」を持つ点が特徴です。 API価格は競合他社と比較してやや高めですが、Xプラットフォームのリアルタイムデータを利用した学習モデルという独自性があります。開発者は、この新しいAPIを用いて革新的なアプリケーション開発に挑戦できます。 環境への影響も懸念されており、今後の大規模化には配慮が必要となります。 xAIの公式サイトでAPIドキュメント等を確認できます。 引用元: https://innovatopia.jp/ai/ai-news/44493/ Updated production-ready Gemini models, reduced 1.5 Pro pricing, increased rate limits, and more Googleは、本番環境対応のGeminiモデルを2種類更新し、Gemini-1.5-Pro-002とGemini-1.5-Flash-002をリリースしました。今回のアップデートでは、以下の改善がなされています。 価格改定: Gemini 1.5 Proの入力・出力トークン価格が50%以上削減されました(128Kトークン未満)。レート制限の増加: Gemini 1.5 Flashは2倍、1.5 Proは約3倍、レート制限が向上しました。パフォーマンス向上: 出力速度が2倍、レイテンシが3倍低減されました。モデル品質の向上: 数学、ロングコンテキスト、ビジョン処理において、大幅な性能向上を実現しました。MMLU-Proベンチマークで約7%、MATHとHiddenMathベンチマークで約20%の改善が見られました。コード生成や画像理解でも2~7%の性能向上を確認しています。レスポンスの簡潔性も向上し、より多くの情報を効率的に取得できます。デフォルトフィルター設定の更新: セキュリティと信頼性を向上させつつ、開発者が用途に最適な設定を選択できるように、デフォルトではフィルターが適用されなくなりました。 これらのモデルは、Google AI Studio、Gemini API、Vertex AIを通じてアクセス可能です。特にGemini 1.5 Proは、最大200万トークンのロングコンテキストウィンドウとマルチモーダル機能を活用した、様々な用途への応用が期待されています。 より高速でコスト効率の良い開発が可能になり、より多くの開発者がGeminiを活用できる環境が整いました。 今後、Gemini APIのレート制限もさらに引き上げられる予定です。 Gemini-1.5-Flash-8B-Exp-0924という実験的なモデルもリリースされており、テキストとマルチモーダル用途での性能向上が図られています。 今回のアップデートは、既存ユーザーにとっても、新規参入者にとっても、より使いやすく、コスト効率の良い開発環境を提供するものと言えます。 詳細については、関連するGoogleのドキュメントを参照ください。 引用元: https://7a0e920-dot-gdm-deepmind-com-prod.appspot.com/discover/blog/updated-production-ready-gemini-models-reduced-15-pro-pricing-increased-rate-limits-and-more/ iOS 18.2 beta adds ‘Upgrade to ChatGPT Plus’ option in Settings app - 9to5Mac iOS 18.2ベータ版で、設定アプリ内にChatGPT Plusへのアップグレードオプションが追加されました。これは、iOS 18.2に搭載されたSiriとAIライティングツールへのChatGPT統合の一環です。 iOS 18.2では、システム全体でOpenAIのアシスタントがSiriの代替として機能し、既存のAppleのライティングツールを補完する形でChatGPTが統合されています。 AppleとOpenAIは、このChatGPT統合において、アップグレードしたユーザーからの収益を共有する合意を結んでいるようです。 設定アプリから「Apple Intelligenceと...
    Show more Show less
    Less than 1 minute

What listeners say about 株式会社ずんだもん技術室AI放送局

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.