HCI Deep Dives

By: Kai Kunze
  • Summary

  • HCI Deep Dives is your go-to podcast for exploring the latest trends, research, and innovations in Human Computer Interaction (HCI). AI-generated using the latest publications in the field, each episode dives into in-depth discussions on topics like wearable computing, augmented perception, cognitive augmentation, and digitalized emotions. Whether you’re a researcher, practitioner, or just curious about the intersection of technology and human senses, this podcast offers thought-provoking insights and ideas to keep you at the forefront of HCI.
    Copyright 2024 All rights reserved.
    Show more Show less
activate_Holiday_promo_in_buybox_DT_T2
Episodes
  • ICMI 2024 Exploring the Alteration and Masking of Everyday Noise Sounds using Auditory Augmented Reality
    Nov 18 2024

    Isna Alfi Bustoni, Mark McGill, and Stephen Anthony Brewster. 2024. Exploring the Alteration and Masking of Everyday Noise Sounds using Auditory Augmented Reality. In Proceedings of the 26th International Conference on Multimodal Interaction (ICMI '24). Association for Computing Machinery, New York, NY, USA, 154–163. https://doi.org/10.1145/3678957.3685750

    While noise-cancelling headphones can block out or mask environmental noise with digital sound, this costs the user situational awareness and information. With the advancement of acoustically transparent personal audio devices (e.g. headphones, open-ear audio frames), Auditory Augmented Reality (AAR), and real-time audio processing, it is feasible to preserve user situational awareness and relevant information whilst diminishing the perception of the noise. Through an online survey (n=124), this research explored users’ attitudes and preferred AAR strategy (keep the noise, make the noise more pleasant, obscure the noise, reduce the noise, remove the noise, and replace the noise) toward different types of noises from a range of categories (living beings, mechanical, and environmental) and varying degrees of relevance. It was discovered that respondents’ degrees of annoyance varied according to the kind of noise and its relevance to them. Additionally, respondents had a strong tendency to reduce irrelevant noise and retain more relevant noise. Based on our findings, we discuss how AAR can assist users in coping with noise whilst retaining relevant information through selectively suppressing or altering the noise, as appropriate.

    https://dl.acm.org/doi/10.1145/3678957.3685750

    Show more Show less
    14 mins
  • ASSETS 2024: SoundHapticVR: Head-Based Spatial Haptic Feedback for Accessible Sounds in Virtual Reality for Deaf and Hard of Hearing Users
    Nov 9 2024

    Pratheep Kumar Chelladurai, Ziming Li, Maximilian Weber, Tae Oh, and Roshan L Peiris. 2024. SoundHapticVR: Head-Based Spatial Haptic Feedback for Accessible Sounds in Virtual Reality for Deaf and Hard of Hearing Users. In Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '24). Association for Computing Machinery, New York, NY, USA, Article 31, 1–17. https://doi.org/10.1145/3663548.3675639

    Virtual Reality (VR) systems use immersive spatial audio to convey critical information, but these audio cues are often inaccessible to Deaf or Hard-of-Hearing (DHH) individuals. To address this, we developed SoundHapticVR, a head-based haptic system that converts audio signals into haptic feedback using multi-channel acoustic haptic actuators. We evaluated SoundHapticVR through three studies: determining the maximum tactile frequency threshold on different head regions for DHH users, identifying the ideal number and arrangement of transducers for sound localization, and assessing participants’ ability to differentiate sound sources with haptic patterns. Findings indicate that tactile perception thresholds vary across head regions, necessitating consistent frequency equalization. Adding a front transducer significantly improved sound localization, and participants could correlate distinct haptic patterns with specific objects. Overall, this system has the potential to make VR applications more accessible to DHH users.

    https://dl.acm.org/doi/10.1145/3663548.3675639

    Show more Show less
    13 mins
  • ASSETS 2024: SeaHare: An omidirectional electric wheelchair integrating independent, remote and shared control modalities
    Nov 9 2024

    Giulia Barbareschi, Ando Ryoichi, Midori Kawaguchi, Minato Takeda, and Kouta Minamizawa. 2024. SeaHare: An omidirectional electric wheelchair integrating independent, remote and shared control modalities. In Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '24). Association for Computing Machinery, New York, NY, USA, Article 9, 1–16. https://doi.org/10.1145/3663548.3675657

    Depending on one’s needs electric wheelchairs can feature different interfaces and driving paradigms with control handed to the user, a remote pilot, or shared. However, these systems have generally been implemented on separate wheelchairs, making comparison difficult. We present the design of an omnidirectional electric wheelchair that can be controlled using two sensing seats detecting changes in the centre of gravity. One of the sensing seats is used by the person on the wheelchair, whereas the other is used as a remote control by a second person. We explore the use of the wheelchair using different control paradigms (independent, remote, and shared) from both the wheelchair and the remote control seat with 5 dyads and 1 triad of participants, including wheelchair users and non. Results highlight key advantages and disadvantages of the SeaHare in different paradigms, with participants’ perceptions affected by their skills and lived experiences, and reflections on how different control modes might suit different scenarios. https://dl.acm.org/doi/10.1145/3663548.3675657

    Show more Show less
    13 mins

What listeners say about HCI Deep Dives

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.