Learning Bayesian Statistics

By: Alexandre Andorra
  • Summary

  • Are you a researcher or data scientist / analyst / ninja? Do you want to learn Bayesian inference, stay up to date or simply want to understand what Bayesian inference is? Then this podcast is for you! You'll hear from researchers and practitioners of all fields about how they use Bayesian statistics, and how in turn YOU can apply these methods in your modeling workflow. When I started learning Bayesian methods, I really wished there were a podcast out there that could introduce me to the methods, the projects and the people who make all that possible. So I created "Learning Bayesian Statistics", where you'll get to hear how Bayesian statistics are used to detect black matter in outer space, forecast elections or understand how diseases spread and can ultimately be stopped. But this show is not only about successes -- it's also about failures, because that's how we learn best. So you'll often hear the guests talking about what *didn't* work in their projects, why, and how they overcame these challenges. Because, in the end, we're all lifelong learners! My name is Alex Andorra by the way, and I live in Estonia. By day, I'm a data scientist and modeler at the https://www.pymc-labs.io/ (PyMC Labs) consultancy. By night, I don't (yet) fight crime, but I'm an open-source enthusiast and core contributor to the python packages https://docs.pymc.io/ (PyMC) and https://arviz-devs.github.io/arviz/ (ArviZ). I also love https://www.pollsposition.com/ (election forecasting) and, most importantly, Nutella. But I don't like talking about it – I prefer eating it. So, whether you want to learn Bayesian statistics or hear about the latest libraries, books and applications, this podcast is for you -- just subscribe! You can also support the show and https://www.patreon.com/learnbayesstats (unlock exclusive Bayesian swag on Patreon)!
    Copyright Alexandre Andorra
    Show more Show less
Episodes
  • #125 Bayesian Sports Analytics & The Future of PyMC, with Chris Fonnesbeck
    Feb 5 2025

    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

    • Intro to Bayes Course (first 2 lessons free)
    • Advanced Regression Course (first 2 lessons free)

    Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

    Visit our Patreon page to unlock exclusive Bayesian swag ;)

    Thank you to my Patrons for making this episode possible!

    Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke, Robert Flannery, Rasmus Hindström, Stefan, Corey Abshire and Mike Loncaric.

    Takeaways:

    • The evolution of sports modeling is tied to the availability of high-frequency data.
    • Bayesian methods are valuable in handling messy, hierarchical data.
    • Communication between data scientists and decision-makers is crucial for effective model use.
    • Models are often wrong, and learning from mistakes is part of the process.
    • Simplicity in models can sometimes yield better results than complexity.
    • The integration of analytics in sports is still developing, with opportunities in various sports.
    • Transparency in research and development teams enhances decision-making.
    • Understanding uncertainty in models is essential for informed decisions.
    • The balance between point estimates and full distributions is a...
    Show more Show less
    58 mins
  • #124 State Space Models & Structural Time Series, with Jesse Grabowski
    Jan 22 2025

    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

    • My Intuitive Bayes Online Courses
    • 1:1 Mentorship with me

    Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

    Visit our Patreon page to unlock exclusive Bayesian swag ;)

    Takeaways:

    • Bayesian statistics offers a robust framework for econometric modeling.
    • State space models provide a comprehensive way to understand time series data.
    • Gaussian random walks serve as a foundational model in time series analysis.
    • Innovations represent external shocks that can significantly impact forecasts.
    • Understanding the assumptions behind models is key to effective forecasting.
    • Complex models are not always better; simplicity can be powerful.
    • Forecasting requires careful consideration of potential disruptions. Understanding observed and hidden states is crucial in modeling.
    • Latent abilities can be modeled as Gaussian random walks.
    • State space models can be highly flexible and diverse.
    • Composability allows for the integration of different model components.
    • Trends in time series should reflect real-world dynamics.
    • Seasonality can be captured through Fourier bases.
    • AR components help model residuals in time series data.
    • Exogenous regression components can enhance state space models.
    • Causal analysis in time series often involves interventions and counterfactuals.
    • Time-varying regression allows for dynamic relationships between variables.
    • Kalman filters were originally developed for tracking rockets in space.
    • The Kalman filter iteratively updates beliefs based on new data.
    • Missing data can be treated as hidden states in the Kalman filter framework.
    • The Kalman filter is a practical application of Bayes' theorem in a sequential context.
    • Understanding the dynamics of systems is crucial for effective modeling.
    • The state space module in PyMC simplifies complex time series modeling tasks.

    Chapters:

    00:00 Introduction to Jesse Krabowski and Time Series Analysis

    04:33 Jesse's Journey into Bayesian Statistics

    10:51 Exploring State Space Models

    18:28 Understanding State Space Models and Their Components

    Show more Show less
    1 hr and 36 mins
  • #123 BART & The Future of Bayesian Tools, with Osvaldo Martin
    Jan 10 2025

    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

    • My Intuitive Bayes Online Courses
    • 1:1 Mentorship with me

    Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

    Visit our Patreon page to unlock exclusive Bayesian swag ;)

    Takeaways:

    • BART models are non-parametric Bayesian models that approximate functions by summing trees.
    • BART is recommended for quick modeling without extensive domain knowledge.
    • PyMC-BART allows mixing BART models with various likelihoods and other models.
    • Variable importance can be easily interpreted using BART models.
    • PreliZ aims to provide better tools for prior elicitation in Bayesian statistics.
    • The integration of BART with Bambi could enhance exploratory modeling.
    • Teaching Bayesian statistics involves practical problem-solving approaches.
    • Future developments in PyMC-BART include significant speed improvements.
    • Prior predictive distributions can aid in understanding model behavior.
    • Interactive learning tools can enhance understanding of statistical concepts.
    • Integrating PreliZ with PyMC improves workflow transparency.
    • Arviz 1.0 is being completely rewritten for better usability.
    • Prior elicitation is crucial in Bayesian modeling.
    • Point intervals and forest plots are effective for visualizing complex data.

    Chapters:

    00:00 Introduction to Osvaldo Martin and Bayesian Statistics

    08:12 Exploring Bayesian Additive Regression Trees (BART)

    18:45 Prior Elicitation and the PreliZ Package

    29:56 Teaching Bayesian Statistics and Future Directions

    45:59 Exploring Prior Predictive Distributions

    52:08 Interactive Modeling with PreliZ

    54:06 The Evolution of ArviZ

    01:01:23 Advancements in ArviZ 1.0

    01:06:20 Educational Initiatives in Bayesian Statistics

    01:12:33 The Future of Bayesian Methods

    Thank you to my Patrons for making this episode possible!

    Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin...

    Show more Show less
    1 hr and 32 mins

What listeners say about Learning Bayesian Statistics

Average customer ratings
Overall
  • 5 out of 5 stars
  • 5 Stars
    1
  • 4 Stars
    0
  • 3 Stars
    0
  • 2 Stars
    0
  • 1 Stars
    0
Performance
  • 5 out of 5 stars
  • 5 Stars
    1
  • 4 Stars
    0
  • 3 Stars
    0
  • 2 Stars
    0
  • 1 Stars
    0
Story
  • 5 out of 5 stars
  • 5 Stars
    1
  • 4 Stars
    0
  • 3 Stars
    0
  • 2 Stars
    0
  • 1 Stars
    0

Reviews - Please select the tabs below to change the source of reviews.