Machine Learning: The New AI Audiobook By Ethem Alpaydi cover art

Machine Learning: The New AI

The MIT Press Essential Knowledge Series

Preview

Get this deal Try for $0.00
Offer ends January 21, 2025 at 11:59PM ET.
Prime logo Prime members: New to Audible?
Get 2 free audiobooks during trial.
Pick 1 audiobook a month from our unmatched collection
Listen all you want to thousands of included audiobooks, Originals, and podcasts.
Access exclusive sales and deals.
Premium Plus auto-renews for $14.95/mo after 3 months. Cancel anytime.
Pick 1 audiobook a month from our unmatched collection.
Listen all you want to thousands of included audiobooks, Originals, and podcasts.
Access exclusive sales and deals.
Premium Plus auto-renews for $14.95/mo after 30 days. Cancel anytime.

Machine Learning: The New AI

By: Ethem Alpaydi
Narrated by: Steven Menasche
Get this deal Try for $0.00

$14.95/mo. after 3 months. Offer ends January 21, 2025 11:59PM ET. Cancel anytime.

$14.95/month after 30 days. Cancel anytime.

Buy for $21.48

Buy for $21.48

Confirm purchase
Pay using card ending in
By confirming your purchase, you agree to Audible's Conditions of Use and Amazon's Privacy Notice. Taxes where applicable.
Cancel

About this listen

Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition - as well as some we don't yet use every day, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning - the foundation of efforts to process that data into knowledge - has also advanced.

In this audiobook, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general listener, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.

©2016 Massachusetts Institute of Technology (P)2016 Gildan Media LLC
Computer Science History Data Science Machine Learning Artificial Intelligence

What listeners say about Machine Learning: The New AI

Highly rated for:

Informative Concepts Real-world Scenarios
Average customer ratings
Overall
  • 4 out of 5 stars
  • 5 Stars
    125
  • 4 Stars
    93
  • 3 Stars
    54
  • 2 Stars
    13
  • 1 Stars
    9
Performance
  • 4 out of 5 stars
  • 5 Stars
    103
  • 4 Stars
    69
  • 3 Stars
    42
  • 2 Stars
    13
  • 1 Stars
    16
Story
  • 4 out of 5 stars
  • 5 Stars
    96
  • 4 Stars
    73
  • 3 Stars
    52
  • 2 Stars
    12
  • 1 Stars
    9

Reviews - Please select the tabs below to change the source of reviews.

Sort by:
Filter by:
  • Overall
    3 out of 5 stars
  • Performance
    3 out of 5 stars
  • Story
    3 out of 5 stars

It's hard to explain machine learning without math

Would you recommend this book to a friend? Why or why not?

I don't really fault the author, but it is very hard to explain such a complicated subject as machine learning in a simple way. Indeed, if I hadn't read Domingues' "the master algorithm" – which I highly recommend instead – I would say it's impossible. Even if you only want to know what all the hype is about without being interested in all the details, I'm not sure this book will be worth your time.

It's hard to find books on machine learning that don't use advanced math. Unfortunately, I think that, in order to go beyond the surface, some amount of math is necessary – even for in introduction. Some things are actually more clear if you put them in equations. Thus, what I would recommend instead (in addition to reading "the master algorithm" for the intuition), is to watch Domingues' (search for "csep 546") and Victor Lavrenko's lectures on machine learning on YouTube, as well as reading Hastie & T.'s "introduction to statistical learning" (which also has free videos available somewhere).

If this is not an option for you because you're looking for a easy read or something available as an audiobook, I can recommend Nate Silver's "the signal and the noise", as well as books that focus more on applications of machine learning, as well as its effect on the economy and society, etc. (my personal favorites are "the second machine age", "machine, platform, crowd", and "the platform revolution" – all available as audiobooks).

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

3 people found this helpful

  • Overall
    3 out of 5 stars
  • Performance
    3 out of 5 stars
  • Story
    3 out of 5 stars

Decent Coverage with Mediocre Accessibility

The author covers the topic well enough and the listener that is able to maintain focus will end up conversant in the topic of machine learning and its associated industries. I am fairly technical, and I had trouble staying engaged with this book. Information rich, but not evocative. Which is probably an unfair accusation to level at any text on such a geeky topic, but there you go dear listener.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

5 people found this helpful

  • Overall
    4 out of 5 stars
  • Performance
    3 out of 5 stars
  • Story
    4 out of 5 stars

Interesting concepts with very dry reading

These topics could be a little more exciting if the orator sounded the least bit exciting. True to the book itself, I️ felt like a machine was reading to me.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

1 person found this helpful

  • Overall
    5 out of 5 stars
  • Performance
    5 out of 5 stars
  • Story
    5 out of 5 stars

Great overview of the field!

Unfortunately, as the field development is vert rapid, the book will start to become outdated in 2017-2018. Some topics already feels missing some small, but important parts from 2016. Anyway, it is definitely recommended for listening, at least in 2017, ~2018.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

  • Overall
    3 out of 5 stars

very broad, shallow knowledge...good for beginners

not a significant or memorable work, but a good introduction to outsiders and non tech people.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

  • Overall
    5 out of 5 stars
  • Performance
    5 out of 5 stars
  • Story
    5 out of 5 stars

Excelente libro!

excelente punto de partida para entender learning machine y las distintas ramas o métodos que abarca. creo es ideal como cultura general, para negocios o incluso para estudiantes que arrancan en el mundo de la ciencia

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

  • Overall
    4 out of 5 stars
  • Performance
    5 out of 5 stars
  • Story
    4 out of 5 stars

Solid overview

A solid book that gives a bird's eye view of the subject and basic problems.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

  • Overall
    4 out of 5 stars
  • Performance
    1 out of 5 stars
  • Story
    4 out of 5 stars

The voice is annoying

Can't say anything about the book because I won't listen to it beyond the first chapter. The narrator is overracting in an reverbing room. I'm giving the current four star rating because it isn't the books fault.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

5 people found this helpful

  • Overall
    4 out of 5 stars
  • Performance
    5 out of 5 stars
  • Story
    5 out of 5 stars

Informative and well read

I selected this book as an intro to machine learning. It was very informative and used simple real world scenarios to make concepts easy to digest.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

  • Overall
    1 out of 5 stars
  • Performance
    1 out of 5 stars
  • Story
    2 out of 5 stars

Wrong narrator and not enough up to date info

Any additional comments?

The narrator sounded like he was reading a real estate sales manual. The material was neither super technical like Andrew Ngs work nor enough of a high level positioning to make it worthwhile on either end.

Something went wrong. Please try again in a few minutes.

You voted on this review!

You reported this review!

6 people found this helpful